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SUMMARY 

The purpose of the present work was to evaluate the importance of formal accuracy and of the conservation 
property in the numerical computation of incompressible flows with arbitrary free boundaries, such as occur in 
wave-breaking problems. Four spatial discretization methods were implemented in a computer code based on the 
VOF method for tracking free surfaces: a non-conservative four-point scheme, the conservative quadratic 
upstream interpolation method, the conservative linear extrapolation method and a lower-order conservative 
scheme based on the power-law discretization. The performance of the four schemes was evaluated in three test 
problems: the propagation of a solitary wave of high amplitude, the propagation of an undular hydraulic jump 
and the flow resulting from a breaking hydraulic jump. The main conclusion obtained in the present work was 
that discrete momentum conservation is more important than the formal accuracy of the spatial discretization 
scheme, particularly when there is recirculation and breaking. 
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INTRODUCTION 

The numerical computation of flow problems involving free surfaces of arbitrary configuration plays 
an important role in the analysis of many problems in coastal and oceanographic engineering, 
hydraulic engineering, aerospace engineering and mould-filling technology. Another closely related 
problem is the calculation of the hydrodynamic forces that arise from the interaction between jets or 
water waves with fixed or moving obstacles. However, the simulation of flows with multiple free 
boundaries remains a challenging topic in computational fluid dynamics because of the intrinsic 
difficulties of the problem: description of the evolution and shape of arbitrary free surfaces without 
logical hurdles, formulation of accurate numerical boundary conditions, recirculation due to the 
contortions of the free surface, turbulence and air-water mixing. 

The marker-and-cell (MAC) method, introduced by Harlow and Welch,' was the first successful 
algorithm for the computation of incompressible flows involving arbitrary free surfaces. However, 
the MAC method had several important limitations: the treatment of the free surface was inefficient, 
the boundary conditions were approximate and the numerical scheme used was prone to instability. 
These limitations were partly overcome in later works. The volume-of-fluid (VOF) method, 
introduced by Nichols and Hirt,' allowed a more efficient tracking of the free surface, whereas the 
introduction of the partial volume function method3 permitted a more accurate representation of 
internal boundaries without the need for introducing curvilinear co-ordinates. Other improvements 
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included the formulation of more accurate free surface boundary conditions4" and the incorporation 
of a k-E turbulence model,6 These subsequent developments of the MAC method were mainly based 
on low-order non-conservative schemes. 

The importance of using higher-order schemes to obtain accurate numerical solutions to problems 
involving complicated vorticity dynamics was demonstrated by Davies and Moore7 in the context of 
confined flows. Thakur and Shyy' made a thorough comparison of several schemes in steady and 
confined flow problems and concluded that the discretizations based on the quadratic upstream 
interpolation method or the second-order upwind method are clearly superior to the central 
differencing or lower-order upwind schemes. These authors used the SIMPLE algorithm; which 
leads naturally to conservative discretizations, as the basic building block for the implementation of 
the spatial discretizations. These developments concerning the testing and comparison of higher- 
order schemes for confined flows have not been extended to free surface flows, especially those 
involving breaking and recirculation. 

In this work, four spatial discretization schemes were implemented in a computer programme 
based on the SOLA-VOF code,'' with the purpose of evaluating the importance of the order of 
accuracy and discrete momentum conservation on the quality of the numerical solutions for three test 
problems of increasing complexity. The four numerical schemes considered were (i) a non- 
conservative scheme based on four-point discretizations of the derivatives in the advection operator, 
(ii) the conservative quadratic upstream interpolation method, (iii) the conservative linear 
extrapolation method and (iv) the lower-order (conservative) power-law discretization. The three 
test problems considered herein were the propagation of a solitary wave of high amplitude, the 
propagation of an undular hydraulic jump and the propagation of a breaking hydraulic jump. 

In what follows, the contents of this paper will be outlined. The next section contains a description 
of the theoretical formulation (governing equations, grid arrangement and basic computational cycle). 
The next two sections deal with the spatial discretization schemes for the momentum equation and 
the treatment of the continuity equation respectively. The numerical treatment of the boundary 
conditions is described in the fifth section. The last two sections describe the application studies and 
the main conclusions respectively. 

The most relevant conclusion obtained in the present work is that discrete momentum conservation 
is more important for the stability and accuracy of the numerical solutions than is the formal accuracy 
of the scheme. This appears to be especially true for problems involving free surface brealung and 
strong breaker-induced recirculation. For the test problems considered, the lower-order power-law 
discretization produced numerical solutions with almost the same quality as those obtained using the 
other (higher-order) conservative schemes. This result indicates that to take full advantage of higher- 
order schemes in free surface flow simulations, it is necessary to improve other parts of the algorithm, 
such as the time-stepping scheme and the numerical boundary conditions. 

THEORETICAL FORMULATION 

The 2D motion of an incompressible fluid with uniform properties in a domain R with boundary as1 
can be stated as follows: determine u = (u(x, t), v(x, t)) and p(x, t )  Vx E fi = R + aR for t > 0 such 
that 

au 1 
- + u - vu - vv2u = --vp + g, 
at P 

v . u = o ,  
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where t is the time, u is the velocity,~ is the pressure, p is the (constant) density, v is the coefficient of 
kinematic viscosity, g = (gx, g,,) is the vector of the external force field and V is the nabla operator. 
An alternative form of the momentum equation is the so-called conservation form 

m+v . ( p u @ u -  
at 

where ,u = pv is the coefficient of dynamic viscosity. Equation (1 a) is appropriate for the derivation of 
numerical schemes that ensure conservation of momentum in a discrete sense." 

The existence of a free surface implies that the position of the boundary 8Jz is not in general known 
a priori and has to be determined as part of the solution. The fluid configuration can be described in 
terms of a volume-of-fluid (VOF) function F(x, t), whose value is unity at any point occupied by the 
fluid and zero elsewhere." Cells with F= 1 are treated as full (i.e. interior) cells, whereas cells with 
F = 0 are considered empty. Cells with F-values between zero and unity which have at least one 
empty neighbour are treated as surface cells. The equation governing the time evolution of F is 

aF 
- + v - (UF) = 0, 
at (3) 

which states that F moves with the fluid. 
To define a well-posed initial-boundary value problem, the governing equations must be 

supplemented by appropriate initial and boundary conditions. The boundary conditions for u may be 
of either Dirichlet or Neumann type, i.e. 

u = U,,(x, t) vx E rD (4) 
or 

and vx E rN, (5) 

where aR = TD + r,, TD and r, are the parts of the boundary where Dirichlet and Neumann 
boundary conditions are imposed respectively and n and z denote the normal and tangential directions 
respectively. These conditions correspond to either velocity or stress specified on the boundary 
respectively. The boundary conditions for F must be specified on every boundary point for which 
ub - n < 0. 

and its normal component 
must be continuous on all. The initial F-function distribution must be specified in such a way that for 
the initial fluid configuration F = 1 in full cells and the fractional volume in the surface cells defines 
the correct interface shape. 

In low-speed flows there is no evolution equation for p and the pressure field must be determined 
indirectly via the continuity equation. If u* is a velocity field obtained using a consistent scheme Q 
for the time variation, advection and diffusion terms in equation (1) or (la) with a provisional 
pressure field p", 

The initial condition for u must satisfy the continuity equation on 

U* = Q(At, AX, u") - At 

P 
-Vp", 

then the pressure correction Sp = p n f l  - p" satisfies a Poisson equation 

v- -V[Sp] = v - u*. (: ) 
This equation must be supplemented by Neumann conditions on TD (obtained by projecting the 
momentum equation onto the direction of the normal n) and Dirichlet conditions on r N  (e.g. on free 
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surface boundaries). l2  Once the pressure correction is determined, the provisional pressure field is 
corrected and the provisional velocity field is updated to reflect the pressure change: 

pn+l  - n - p  + 6 p ,  

u"+' = U" - - V[dp].  
At 
P 

The governing equations were discretized using a staggered mesh of rectangular cells of variable 
width Axi and height Ayj. The arrangement of the dependent variables in a typical cell is illustrated in 
Figure 1. To derive conservative discretizations for equations (la), (6) and (3), the computational 
domain is divided into a number of control volumes, on each of which the governing equations are 
integrated using the divergence theorem. The geometrical information required for the derivation of 
the discretized equation for a particular node P consists of the volume of the cell, the areas of the cell 
faces and the spacings between node P and its neighbours (see Figure 2). Owing to the staggered 
nature of the grid, the control volumes for u and v are shifted with respect to the control volumes for 
the scalar quantities. 

The solution algorithm consists of three main steps. In the first step a provisional velocity field 
u*=(u*,  v*) is computed using a consistent scheme for the momentum equation with the old 
pressure gradient Vp". This provisional velocity will not in general satisfy the continuity equation, 
because the advanced time pressure field is not yet known. In the second step the pressure correction 
Sp = p"+' - p" is calculated in such a way that the residual divergence left in the temporary velocity 
field is driven to zero. Once the pressure correction is available, the pressure p" and the provisional 
velocity u* are corrected so that u"+' satisfies the continuity constraint. In the third step the fluid 
configuration is updated by solving equation (3), following the method of Nichols and Hirt which is 
described in detail in References 2 and 10. 

MOMENTUM EQUATION APPROXIMATIONS 

In the present work, three different higher-order spatial discretization schemes were considered a 
non-conservative scheme based on four-point approximations for the advection term (scheme l), a 
conservative scheme based on quadratic upstream interpolation (scheme 2) and a scheme based on 
linear extrapolation (scheme 3). For the purpose of evaluating the performance of the higher-order 

J -r i AK 

Figure 1. Location of dependent variables in typical mesh cell: 0, U-velocity; A, V-velocity; 0, pressure and F-function 
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AyN[ 

A S  

so 
Figure 2. Schematization of control volume used for derivation of conservative discretizations 

schemes with respect to their accuracy, stability and computational efficiency, a lower-order five- 
point conservative scheme based on the power-law discretization (scheme 4) was also implemented. 

Scheme I is based on equation (1). For a generic node P the acceleration at time step n can be 
written as 

with 4 = u or v and S4 = -( l/p)ap/ax + g, or -(l/p)ap/+ + g, respectively. Following the usual 
procedure, the pressure gradient and viscous acceleration terms were approximated using centred 
differences. The partial derivatives a4/ax and a+/@ were evaluated using four-point approximations 
involving node P, two upstream nodes and one downstream node. The expression for a4/ax is 

ad h w & w  + h W w )  
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if u 3 0 and 
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if u < 0, where the spacings are as shown in Figure 2. The approximations for a4/ay,  which depend 
on the sign of v, are constructed in the same way. Equations (9a) and (9b) can be derived from Taylor 
series expansions and take into account the variation in the mesh spacing. If the mesh is uniform, then 
equations (9a) and (9b) reduce to 

a4lax !% ( 2 4 E  + 3 4 P  - 64W + 4 W W > / 6 h .  

and 

-(2(PW + 34P - 6dE f 4EE)/6h 

respectively, which are formally third-order-accurate. 
For nodes adjacent to the mesh, free surface and internal boundaries the values (PEE, dww, 4" and 

q5ss may not be available. Therefore, when computing the approximations for a$/ax  or a4/ay for 
node P ,  it is necessary to test whether the nodal values required for the higher-order approximation 
are outside the computational domain, inside a void region or inside an internal obstacle. If one of 
these conditions is verified, than a simple first-order upwind differencing is used instead of (9a) or 

The conservative schemes 2-4 are based on equation (la) and were constructed as follows. 
Combining the momentum and continuity equations, the following expression is obtained for the 
acceleration within the control volume enclosing a generic node P: 

t9b). 

a@ 
at 

-(pp VOZ) = (Jw - J, + J, - J,)" + (S#)VOZ, 

where 4 = u or v, an overbar denotes the average over the control volume, VoZ is the volume of the 
&-cell and J,, J,, J,  and J, are the momentum fluxes due to advection and diffusion through the 
faces of the control volume (see Figure 2). These fluxes may be expressed in terms of the neighbour 
nodal values as 

where F, = pwuwAyj, F, = peu,Ayj, F, = pnvnAxi and Fn = p n v n h i  are the mass flow 
rates across the control volume faces and Ow = p A y j / h w ,  De = p A y j / h E ,  Ds = &/Ays and 
D, = ,uAxi/Ah are the diffusion coefficients. The velocity and density at the cell faces are linearly 
interpolated when they are required at locations where they are not defined. Note that even though the 
density is uniform, the total mass (hence the average density) within a cell depends on the F-value in 
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that cell. Schemes 2-4 differ only in the way the values of #J at the cell faces are obtained. Once the 
interpolation method for #J is specified, equation (10) can be cast into the form 

where the coefficients aE, aw, aN and as may be calculated in terms of the mass flow rates and 
diffusion coefficients, ap = aE + aw + aN + as and SU is the source term integrated over the control 
volume. 

In scheme 2 the cell face values were calculated using quadratic upstream interp~lation.'~ For 
instance, if u, 2 0, a local expansion of the form 

#J(x) = $p + klx + k 2 2  

is assumed between nodes W, P and E (see Figure 3, top). The undetermined coefficients are then 

thus 

where r # ~ ~ ~  denotes the value of #J upstream of the east face, A& = #JE - #Jp and A#Jw = #Jp - #Jw. If 
u, c 0, the local quadratic approximation is based on the nodes P, E and EE (Figure 3, bottom). In this 
case the cell face value was calculated using the expression 

where #Jup = #JE and A#JEE = #JEE - (PE. The values of #J at the remaining cell faces were found using 
similar expressions. 

During the development of the present work a more complete expansion of the form 

4(x, y )  = #Jp + klx + k 2 2  + k3Y 4- k.2 (15) 

was also tried. For the east face and for the case of u, 2 0 the resulting #J,-value is 

where 6, = 6 A y ~  - 1/3(a2 + AyNAys), 6 ,  = 6Ays + 1/3(d2 + AyNAys) and 6 =Am - Ays. How- 
ever, this scheme did not give better results than the simpler unidimensional quadratic interpolation 
method. 
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Figure 3. Schematic illustration of calculation of cell face value qje using quadratic upstream interpolation (top) and linear 
extrapolation (bottom) 

In scheme 3 the cell face velocities were obtained by means of linear extrapolation, which gives the 
second-order upwind method if the velocity field is uniform. If u, 2 0, the interpolated value of 4, is 

with &p = I&, whereas if u, < 0, then 

with cpUp = &. 

coefficients were calculated using the expressions 
Schemes 2 and 3 were implemented as follows. For each #+cell containing fluid, the influence 

This choice of the coefficients is equivalent to the use of + = g5up at all cell faces’ (i.e. to the first- 
order upwind scheme). The contributions due to the differences between the values of + at the 
neighbour nodes were then added to the source term SU. This arrangement of the calculations has 
several advantages. First, the first-order upwind scheme is automatically selected if the addition of the 
correction terms to SU is skipped. This facilitates the selection of the interpolation method for cells 
adjacent to internal obstacles or free surface boundaries, as well as the treatment of the boundary 
conditions. Second, both the quadratic upstream interpolation and linear extrapolation methods can 
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be implemented using the same basic routine. Only the code segments for adding the correction terms 
are different. Finally, this procedure allows the reformulation of the scheme as an implicit method if 
the coefficients U E ,  aw, aN, as, ap and the source term SU are stored in separate arrays and the 
boundary conditions are handled appropriately. 

In scheme 4 the momentum fluxes were modelled by means of the power-law method.’ The 
acceleration within the control volume enclosing the nodal value & was calculated using equation 
(12), but the influence coefficients were 

The expressions for the influence coefficients aE, aw, aN and as are similar to those used in 
connection with SIMPLE-type 

In the present implementation, scheme 1 requires fewer arithmetic operations per time step than the 
other higher-order schemes. Also, the treatment of the mesh, free surface and internal obstacle 
boundaries is simpler than for the other higher-order schemes. However, this scheme does not ensure 
conservation of momentum in a discrete sense. Schemes 2 and 3 have the advantage that momentum 
conservation is ensured (except for round-off errors) while taking into account the effects of variable 
mesh spacing. Scheme 3 has the additional advantage of requiring fewer arithmetic operations per 
time step than scheme 2, but is formally less accurate. Scheme 4 was implemented mainly for 
comparison purposes, since it is formally less accurate and introduces a larger amount of numerical 
dissipation than the higher-order schemes. Nevertheless, this scheme is also of interest because it 
requires much less computational effort and fewer logical tests than the other schemes considered 
herein, since only five nodal values are required in the computation of a&at. 

Once the acceleration &$”,at computed using the old pressure gradient Vp” is available, the 
provisional velocity field u* = (u*, w*) is calculated using the forward Euler method, i.e. 

with 4n+1 = u* or w*. This provisional velocity field will not in general satisfy the continuity 
equation, because p”+l is not yet available. Thus a second step is required to project u* = (u*, w*) 
onto its divergence-free part, as will be described in the next section. 

CONTINUITY EQUATION APPROXIMATIONS 

To satisfy the continuity equation, a pressure correction must be determined so that the dwergence of 
the temporary field is driven to zero. In the present work, two different schemes were used for solving 
the continuity equation: one based on the SOR method and the other on the conjugate residual 
method for solving systems of linear equations. The SOR method has the advantages of greater 
simplicity and easier treatment of the surface cells. However, its rate of convergence is poor, 
especially in problems involving large meshes. The conjugate residual method is more difficult to 
implement but has much greater computational e f i~ i ency .~~’  

In the SOR implementation of the pressure equation the local pressure change is calculated from 
the condition V * (u* + 6u) = 0 in all N 1  cells and from the conditionp“ + Sp = 0 in all surface cells. 
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In both cases the velocities located on the sides of the cell are simultaneously adjusted in response to 
the pressure change in the cell. For cells that are full of fluid the pressure correction is calculated from 

6PP = -sP/(as/aP)P3 (20) 

(21) 

with 

Sp = (u: - U k ) / h i  + (v; - v:)/Ayj 

and 

The new iterates ( )(") for the pressure and the four cell face velocities are obtained from the previous 
iterates ( )("-l) by means of the equations 

For cells that contain a free surface the pressure is computed in such a way that an interpolation 
between the pressure in the surface cell and the pressure in the nearest-neighbour full cell yields the 
correct pressure at the free surface. The pressure change can still be represented by equations (21) and 
(22), but with equation (2 1) replaced by Sp = (1 - q)m + qpsurf - pp, where q is the ratio of the 
distance between the free surface and the centre of the interpolation neighbour cell and pSd is the 
pressure at the free surface (assumed zero). One complete iteration consists of correcting the 
pressures and velocities in all cells occupied by fluid. The mesh must be swept several times until 
convergence is reached, i.e. until the velocity field obtained using equations (23aH23e) is discretely 
divergence-free. 

The second procedure for finding the pressure correction, which for most problems is more 
efficient than the SOR method described above, was implemented as follows. By integrating equation 
(6) over the control volume surrounding the pressure node P and applying the Gauss theorem, the 
following equation is obtained: 

ap6pp = aE6pE + aw6pw + aN6pN + as6ps - m, (24) 
where 

If the P-cell is an obstacle, void or surface cell, aE, aw, a N ,  as and lizp are set to zero and up is set to 
unity. If one of the neighbouring cells is a surface cell and the current cell is its interpolating 
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neighbour, than it is necessary to account for the correct coupling between the two cells. For example, 
if the N-cell is a surface cell and the P-cell is the interpolating full cell, then 6pN is related to 6pp by 

6PN = (1 - 496PP -& + VPsurf + (1 - VIP;. (26) 

T& appropriate coupling between the two cells can be achieved by setting aN=O and by adding 

Equation (24) leads to a sparse symmetric system of linear equations in which the free surface, 
obstacle and perimeter boundary conditions are algebraically incorporated. Following Torrey's et 
al. ,3 this system is solved by the conjugate residual method. However, it is also possible to obtain the 
solution using line relaxation, the strongly implicit procedure (SIP) or a preconditioned conjugate 
gradient method. 

The method described above is implemented in three steps. In the first step the coefficients and the 
source term -m, are computed for all cells in the mesh and the boundary conditions are incorporated. 
In the second step the pressure correction is computed by the conjugate residual method. In the final 
step, equations (7) and (8) are used to update the pressure and velocity fields so that 
u"+l = (u"+', 

?AtAyj/(phE) to a P  and VAtAYj/ (phE)(pN - (1 - r)p$ - ?Psud) to mp. 

is discretely divergence-free. 

BOUNDARY CONDITIONS 

In this section the formulation of the discretized boundary conditions will be described. At the regular 
mesh boundaries the velocity boundary conditions were imposed using a layer of fictitious cells 
surrounding the mesh, following the usual procedure. This technique has the advantage that the same 
expressions used for treating interior cells can also be used for cells adjacent to the mesh boundaries. 
Alternatively, if a conservative discretization method is used, the correct boundary conditions can be 
imposed by setting the corresponding influence coefficient to zero and then adding the contribution 
due to the boundary stress to the source term. 

On the free-surface the simplified conditions p = 0 and p(au,/an) = 0 were used, i.e. the effects of 
molecular viscosity and surface tension were neglected. Thus it was assumed that the fluid behaves 
like an ideal fluid in all surface cells. 

The normal stress condition was imposed as a boundary condition for the pressure during the 
solution of the pressure correction equation. The tangential stress conditions were specified in the 
following way. First, the orientation of the free surface is sensed in a crude ~ a y . ~ , " ' ~  For the cases in 
which the slope of the free surface was less than unity, it was assumed that a/an x 31%; otherwise 
the condition a/an M alax was assumed. The tangential boundary conditions were imposed by setting 
the velocities in the interface between surface and empty cells using the continuity equation and by 
setting the velocities in empty cells adjacent to partial fluid cells in such a way that au/+ = 0 or 
&/ax = 0. For example, in the situation depicted in Figure 4, these two conditions give 

and 

respectively. With this prescription, fictitious drag forces exerted on the fluid at surface cells are 
avoided. 
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VOID REGION 

Figure 4. Definition sketch for implementation of numerical free surface boundary conditions 

APPLICATIONS 

Propagation of a solitary wave 

The propagation of a solitary wave over a horizontal bottom is a classic test problem for free surface 
codes, because the problem is non-linear and the computed results can be compared with analytical 
solutions. 

This application study was performed to evaluate the accuracy and stability properties of the 
discretizations described in the present work. The computed wave celerity and amplitude obtained 
using the four spatial schemes were compared with the theoretical solution for a highly non-linear 
solitary wave. The degradation of the wave profile due to numerical effects was evaluated by 
computing the RMS deviation between the computed and theoretical solutions. 

The definition sketch for this test problem is presented in Figure 5. The space and time units were 
chosen so that g =  1 and h = 1. A solitary wave with dimensionless amplitude 

and initial position x,,,,~ = 10 was defined in a computational domain 40 units long and 1.8 units high. 
The wave profile, fluid velocity and pressure were generated using the third-order theory developed 

x, 
Figure 5 .  Definition sketch for solitary wave problem: H, wave height; h, still water level; 7, free surface elevation; X,,,,, 

initial position of wave crest 
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by Fenton.16 In this approximation the wave celerity is 

and the elevation of the free surface above the still water level is obtained from the expression 

where S = 1/ cosh(x - ct) and T = tanh(x - ct). Although the solitary wave has infinite length, its 
effective length (where the momentum and energy are concentrated) is A,, = h/(3/4e,)'12. Thus for 
the test problem Aeff = 1.6330. 

The computational domain was discretized using a mesh with 7 = 300 cells in the x-direction with 
A.x=O.133333 (giving a numerical resolution of nearly 12 points per effective wavelength) and 
J = 24 cells in the y-direction with Ay = 0.07. The kinematic viscosity was specified as v = and 
the time step was At = 0-01. Four numerical simulations were performed, using the same input data 
and varying the numerical scheme used in the momentum equations. The numerical simulations were 
stopped after t = 15 time units, which corresponds to 11.5 effective lengths of propagation. 

The results of the calculations for the solitary wave problem at the end of the calculation time are 
summarized in Table I, which shows the computed amplitude and position of the wave crest for the 
theoretical solution and for the four numerical solutions obtained with schemes 1-4. Also included in 
this table is the mean quadratic deviation defined by the expression 

where qc,mputed is the wave elevation obtained in the numerical solution, thal is the ending time and 
Ccomputed is the wave celerity obtained in the numerical solution. This quantity serves as an indicator 
of the degradation of the wave profile due to numerical effects. The results show that the non- 
conservative higher-order scheme produced more accurate predictions of the crest position (or wave 
celerity) and wave amplitude than the three conservative schemes. Also, the degradation of the wave 
profile due to numerical effects was smaller for scheme 1 than for the conservative discretizations. 
The numerical solutions obtained using schemes 2-4 were almost identical. Thus in this test problem 
the 'best' conservative scheme was scheme 4 (power-law discretization) because it required fewer 
arithmetic operations and logical tests to attain the same accuracy as the other conservative 
dscretizations. 

Figure 6 shows the evolution of the wave profiles for the computed solutions and the theoretical 
solution. The graphical output confirmed the numerical results presented in Table I. In particular, it is 
observed that scheme 1 reproduced the front profile of the solitary wave with remarkable accuracy. 
This figure shows that the degradation of the wave profile manifests itself in the appearance of small 
dispersive waves and in a slight forward tilting of the computed wave profiles. For all schemes the 
computed wave amplitude decreased at the beginning of the simulation (between t = 0 and 5) and 
then increased at a nearly constant rate. This shows that the numerical solutions were slightly 
unstable. The growing rate of the wave amplitude was slightly slower for the conservative schemes. 
However, it is apparent that the conservative schemes also induced larger dispersive losses than 
scheme 1. The fact that all schemes revealed a tendency to instability may be attributed to the very 
high Reynolds number used in the calculations and to the high dimensionless amplitude. 

The fact that both low-order and higher-order schemes produced almost identical solutions is 
somewhat surprising. However, since the higher-order schemes are not used near the free surface, the 
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Table I. Computed wave crest position, wave height and mean quadratic deviation for theoretical solution and 
four numerical solutions obtained in solitary wave propagation test 

Xcrest Wave height Mean quadratic deviation 

Theoretical 
Scheme 1 
Scheme 2 
Scheme 3 
Scheme 4 

34.3839 
34.8730 
34.9298 
34.9401 
35.1075 

0.50000 
0.46082 
0.47772 
0.47915 
0.49 I70 

- 

5,032 x 
8.148 x lop4 
7.947 x 10-4 
8.122 x 10-4 

performance of the higher-order schemes may have been affected by the small number of cells in the 
y-direction in the region above the still water level. 

Numerical simulation of undular and breaking hydraulic jumps 

The moving hydraulic jump is a well-studied type of which allows simple and accurate 
checks of mass and momentum conservation in free surface flow computations. This type of flow can 
be generated using simple initial and boundary conditions. In the present work, moving hydraulic 
jumps were generated by pushing a uniform stream into a rigid vertical wall (see Figure 7). 

If g, u2 and h2 are known, the discrete forms of the mass and momentum conservation laws can be 
combined into a cubic equation for the depth ratio h* = hl/h2:  

2h*Fr = (1 + h*)( l  - h*)2, (30) 

where Fr = u;/gh2 is the Froude number of the incident stream. For Fr > 0 this equation has two real 
positive roots and one real negative root. The physical solution corresponds to the positive root 
verifying the inequality h* > 1. 

In a Galilean reference frame moving with the jump celerity, the jump is seen as a sudden 
transition from subcritical to supercritical flow, characterized by an increase in water level and by a 
loss of energy of the nearly horizontal flow. According to the second law of thermodynamics, the 
resulting motion must be less organized than a nearly horizontal flow and thus may consist of either 
short waves or turbulence. It was found experimentally2' that for h* > 1.28 the propagating jump 
maintains a purely undular character and the number of waves present at any instant is proportional to 
the time elapsed since the initiation of the jump. Lemoine2' found the following approximate 
expressions for the amplitude a and wavelength ;1 of the jump waves: 

Favre2' verified experimentally that the wavelength of the jump waves is exceptionally sensitive to 
experimental conditions. Therefore we should expect that this wavelength should also be sensitive to 
the accuracy of the numerical scheme used to simulate jump waves. For h* > 1.28, breaking becomes 
increasingly prominent. For depth ratios greater than two the moving hydraulic jump is similar to a 
klly developed breaking wave. This process eventually leads to the production of turbulence, which 
dissipates energy from the incident stream. 

In the present study, two moving hydraulic jumps were simulated. The first test case was a 
numerical simulation of Favre's experiment number 22. Abbott and Rodenhuis22 computed the 
evolution of jump waves for this test case, using a numerical method based on the Boussinesq 
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Figure 7 Definition sketch for moving hydraulic jump test case 

equations for shallow water dispersive waves, and obtained computed wavelengths within 3 per cent 
of Favre’s. The physical parameters used in the present study were chosen as close as possible to 
those of Favre’s experiment. The computational domain was 6 m long and 0.2 m high, with a stream 
depth of 0.1075 m. The domain was discretized using a regular mesh of 200 x 20 cells with 
Ax= 3 cm and Ay = 1 cm. The moving jump was generated by imposing an initial horizontal 
velocity of 0-1386 m s-’. The acceleration due to gravity was g =  9-81 m s - ~ .  The molecular 
viscosity was chosen as v = 1.14 x m2 s-l and the time step was At = 0-005 s. Four numerical 
experiments were performed, each with a different discretization scheme for the momentum 
equations. The simulations were stopped after t = 4.1 s. 

Figure 8 shows the evolution of the free surface configuration for the simulation performed with 
the quadratic upstream interpolation scheme. It is observed that the development of the jump waves 
was progressive. The height of the leading jump wave and the wavelength of the train increased 
during the simulation, but appeared to stabilize after an initial build-up. 

The asymptotic wavelength I, and wave height a, for the leading jump wave were estimated by 
means of an extrapolation procedure. The position and height of the two leading crests were plotted 
against l / t  and using a trial-and-error method it was found that the expressions 

I =  exp(al + b,/t + cl/8), a = exp(a2 + b2/t + c2/8)  

provided a good fit for the two relevant quantities. Thus I, = exp(a,) and a ,  = exp(a2). Table I1 
contains a summary of the results obtained in the four simulations of the undular jump. 

It is observed that the wavelength I, is in fact slightly more sensitive to the numerical scheme 
used than the wave height a,. The wavelength determined experimentally by Favre for this test case 
was I, = 1.01 m. The conservative schemes reproduced this value to three significant digits, 
whereas the non-conservative scheme predicted I, = 0.95, which is the same value as predicted by 
the linear approximation of Lemoine. The non-conservative scheme predicted a, = 0-133 m, 
whereas all conservative schemes yielded a, = 0.135, which is the value determined experimentally 
by Favre. Thus it can be concluded that for this test case the conservative schemes produced better 
results than the higher-order non-conservative scheme. The computed fluid height at the wall after 4 s 
was 0.1222 m for the non-conservative scheme (scheme 1) and 0.1219 m for schemes 2 4 ,  with 
errors of less than 1 per cent with respect to the theoretical value of 0.1225 m. 

The second test case involving the propagation of hydraulic jumps was the simulation of a strong 
jump with depth ratio h* = 2. In this case the rate at which energy is lost by the nearly horizontal flow 
cannot be compensated by the creation of dispersive waves. Thus the jump front becomes unstable 
and breaks and the energy is dissipated by large vortices and turbulence. The fluid height at the wall 
still provides a direct check of overall momentum conservation. 

In this test case the space and time units were chosen so that g = 1 and h = 1 .  The input fluid 
velocity was u = 0.8860 so that h* = 2. The computational domain was 15 units long and 3.6 units 
high and was discretized using a mesh of 150 x 48 cells. The molecular viscosity was chosen as 
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Table 11. Extrapolated wavelength and wave height of leading jump wave obtained with four discretization 
schemes 

Scheme 1 exp(-2.0204 - 0.1 120/t + 0.0966/tz) 0.133 exp(-0.0479 - 1.3087/t + 0.3948/p) 0.953 
Scheme 2 exp(-1.9999 - 0.1828/t+ 0.1659/t2) 0.135 exp(0.0083 - 1.4537/t + 0.4952/?) 1.008 
Scheme 3 exp(-1.9999 - 0.1828/t + 0.1659/t2) 0.135 exp(0.0085 - 1.4543/t + 0.4956/?) 1.09 
Scheme 4 exp(-1.9999 - 0.1828/t+ 0.1659/t2) 0.135 exp(0.0083 - 1.4537/t + 0.4952/?) 1,008 

v = lop6. Four numerical simulations were performed, each with a different discretization scheme. 
The computations were stopped after t = 9.1 units. 

Figure 9 shows three velocity and free surface configuration plots obtained using scheme 2. These 
plots describe the initial stage of breaking, when the free surface folds onto itself, and a subsequent 
cycle of splashing and vortex formation. The large-scale ‘roller-type’ vortices were generated by the 
break-up of the surface shear layer created by the plunging front. The plot corresponding to t = 9.0 
shows two well-developed vortices, with a third one starting to form near the toe of the jump. The 

I Time = 5.000 I 
I 

1 Time = 7.000 

------I Time = 9.000 

Figure 9. Development of breaking hydraulic jump, computed using quadratic upstream interpolation scheme 
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Figure 10. Development of breaking hydraulic jump, computed using power-law discretization scheme 

results obtained using scheme 3 were similar to those obtained using scheme 2, but with a slight 
smearing of the vortices and of the fine structures of the flow (e.g. the corrugations of the free surface 
during the splashing cycle). 

Figure 10 shows three velocity and free surface configuration plots obtained using the lower-order 
power-law scheme. The qualitative characteristics of the solution were similar to those of the solution 
obtained using scheme 2, but some differences are also apparent. First, there was a slight smearing of 
the fine structures during the initial splash. This is apparent in the plot corresponding to t = 7.0. 
Second, the vortex structures away from the advancing front appeared to dissipate more quickly than 
in the simulation performed with scheme 2. Finally, the vortices were elongated in a slighly different 
spatial orientation. 

The numerical simulation performed using scheme 1 became unstable just after the initiation of 
breaking. Figure 11 illustrates three velocity and free surface plots obtained using scheme 1, but with 
the viscosity increased to v = lop5. It is observed that the computed solution was unstable, with non- 
physical features developing rapidly. Another indication of the poor performance of scheme 1 was 
the fluid height at the wall. The average fluid height at the wall after the initial upsurge was 1-95 for 
scheme 1, 2.03 for schemes 2 and 3 and 2.02 for scheme 4. 



564 C. M. LEMOS 

I I T i m e  = 6.000 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  ................. 7 . . . . . . . . . . . . . . . . .  . . . . . . . . .  

. . . . . . . . . .  .. . . . . . . .  . . . .  . . .  
. . . .  . . .  . . . . . .  . . . . . . . . . .  . . .  

Time = 6.500 

. . . . . .  ..................... ..................... ...... q ..................... . . . . . . . . . . . . . .  
. . . . . . . . . . . . . .  . . . . . . . . . .  . . . . . . . . . . . . . . . .  . . . . . . . . . .  . . . . . . . . .  

J 

T i m e  = 7.000 

. .  ....... - ............. ............. ............ ............. ............. . . . . . . . . . .  . . . . . . . .  . . . . . . .  . . . . . . . . .  . . . . . . . . . . .  . . . . . . . .  . . . .  . . . . . . . . .  . . . . . . . . . .  . . . . . . .  . . . . . . .  . . . .  . . . . . . . . . .  

...... . . . . . . . . .  . . . . . . . .  . . . . . . . .  . . . . . . . . .  . . . . . . . . .  ......... . . . . . . . . .  . . . . . . . .  . . . . . . . .  . . . . . . . . .  d ..... . . . .  

Figure 11. Development of breaking hydraulic jump, computed using non-conservative scheme 

Thus it can be concluded that in this test case, which involves recirculation and breaking, discrete 
momentum conservation is more important for the quality of the numerical solution than the order of 
the scheme used for the spatial discretization. 

CONCLUSIONS 

In the present work, four spatial discretization schemes for the integration of the momentum equation 
were incorporated in a computer code for free surface flows with arbitrary configurations based on the 
VOF method. The purpose of the work was to evaluate the influence of fomial accuracy and discrete 
momentum conservation on the stability and accuracy of the numerical solutions for problems 
involving large free surface distortions. 

The numerical schemes considered in the present work were (i) a non-conservative scheme based 
on four-point approximations for the spatial derivatives in the advection term, (ii) a conservative 
scheme based on quadratic upstream interpolation, (iii) a conservative scheme based on linear 
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extrapolation and (iv) a lower-order conservative scheme based on the power-law discretization. 
These four schemes were compared in three test problems: the propagation of a high-amplitude 
solitary wave, the propagation of an undular hydraulic jump and the propagation of a breaking 
hydraulic jump. 

The results obtained for the solitary wave problem showed that the four schemes reproduced 
accurately the theoretical propagation velocity, even for a relatively coarse discretization. However, it 
was found that the non-conservative scheme was potentially unstable. The simulation of the moving 
undular jump showed that the conservative schemes performed slightly better than the non- 
conservative scheme. Finally, the simulation of the breakmg hydraulic jump showed that the non- 
conservative scheme produced unstable or physically incorrect solutions, whereas the three 
conservative schemes yielded good numerical solutions. The lower-order scheme introduced a slight 
smearing of the fine details of the flow in regions containing thin laminae of fluid or where the 
velocity gradient was small. 

The numerical solutions obtained in the present work showed that in free surface flow 
computations, discrete momentum conservation is more important than the formal accuracy of the 
discretization. Among the higher-order schemes, the quadratic upstream interpolation scheme 
(scheme 2) performed slightly better than the linear extrapolation scheme (scheme 3). It was found 
that the lower-order scheme (scheme 4) performed almost as well as the higher-order conservative 
schemes. It is expecteed that the difference between the various conservative schemes can only be 
established by improving other characteristics of the numerical algorithm (time-stepping scheme, 
numerical boundary conditions, transport algorithm for the F-function, etc.) or by considering more 
difficult test cases. 

APPENDIX: NOMENCLATURE 

coefficients of finite difference equations 
diffusion coefficients for faces w, e, n, s of P-control volume 
volume-of-fluid (VOF) function 
Froude number in hydraulic jump problem 
mass flow rates through faces w, e, n, s of P-control volume 
gravitational acceleration 
(gx, gy), vector of body force acceleration 
components of body force acceleration in x- and y-directions 
still water level in solitary wave problem 
depth ratio for hydraulic jump 
wave height of solitary wave 
momentum fluxes through faces w, e, n, s of P-control volume 
residual divergence in pressure correction equation 
direction normal to boundary 
pressure 
residual function in pressure correction equation 
time 
velocity component in x-direction 
(u, v) velocity vector 
boundary velocity 
temporary velocity component in x-direction 
temporary velocity 
velocity component in y-direction 
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V* 

Vol 
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Greek letters 

rD 
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9. 
10. 

11. 
12. 

temporary velocity component in y-direction 
volume of P-control volume 
horizontal co-ordinate 
(x, y), position vector 
vertical co-ordinate 

part of boundary on which Dirichlet boundary conditions are applied 
part of boundary on which Neumann boundary conditions are applied 
space or time increment 
coefficient of dynamic viscosity 
coefficient of kinematic viscosity 
density (uniform in present work) 
generic variable in advectiodiffusion equation (u or v in present work) 
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